1. 近年来代表性论文 [1] Co Single-Atom Catalysis for High Efficiency LiCl/Cl2 Conversion in Rechargeable Lithium-Chlorine Batteries; Advanced Materials, 2025, 2418990. [2] V activated electro-epoxidation catalyst in membrane electrode assembly system for the production of propylene oxide; Nature Communications, 2025, 16. 3113. [3] Vacancy-Activated B-Doping for Efficient 2e- Oxygen Reduction through Suppressing H2O2 Decomposition at High Overpotential; Angewandte Chemie-International Edition, 2025, e202423056. [4] Regulating catalyst and ionomer interactions to promote oxygen transport in fuel cells; Applied Catalysis B: Environmental, 2025, 365, 124894. [5] Elucidating the mechanistic synergy of fluorine and oxygen doping in boosting platinum-based catalysts for proton exchange membrane fuel cells; Journal of Colloid and Interface Science, 2025, 682: 115–123. [6] Ion‐Framework Electrolyte Featured Zinc‐Ion Transport for Solvent and Interphasial Co‐Passivation. Advanced Materials, 2025, DOI: 10.1002/adma.202503765. [7] Structural modulation of ionic liquids as efficient catalysts for esterification reaction; Canadian Journal of Chemical Engineering, 2024, 102(6): 2244–2255. [8] Gel Resin Supported Ionic Liquids as Solid Acids for Esterification Reaction; Catalysis Letters, 2024, 154: 5998–6011. [9] The research progress on COF solid-state electrolytes for lithium batteries; Chemical Communications, 2024, 60: 10046–10063. [10] Amphiphilic Polymer Electrolyte Blocking Lattice Oxygen Evolution from High-Voltage Nickel-rich Cathodes for Ultra-Thermal Stabile Batteries; Angewandte Chemie-International Edition, 2024, 63, e202407024. [11] Hydrogen Radical Enabling Industrial-Level Oxygen Electroreduction to Hydrogen Peroxide; Angewandte Chemie-International Edition, 2024, e202420063. [12] Enhancing Interfacial Dynamic Stability Through Accelerated Reconstruction to Inhibit Iron-Loss During Initial Electrochemical Activation; Advanced Energy Materials, 2024, 14, 2302403. [13] High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries; Advanced Energy Materials, 2024, 14, 2302403. [14] Regulating Interfacial Li Deposition at Low-Temperature through Eliminating Li+ Transfer Mismatching by Artificial Modifying the Interface in Solid State Battery; Advanced Energy Materials, 2024, 2405284. [15] Synergistic Interactions Between Co Nanoparticles and Unsaturated Co-N2 Sites for Efficient Electrocatalysis; Advanced Functional Materials, 2024, 2410373. [16] Inspiration of Bimetallic Peroxide for Controllable Electrooxidizing Ethylene Glycol Through Modulating Surficial Intermediates; Advanced Functional Materials, 2024, 2404594. [17] Cu-Sn Bimetallic Activated Carbon–Carbon Coupling for Efficient Furfural Electroreduction; ACS Catalysis, 2024, 14, 5817-5826. [18] Rigid and flexible dual-network polymer electrolytes with enhanced interfacial interaction to accelerate Li+ transfer; Journal of Materials Chemistry A, 2024, 12: 28224–28232. [19] Optimized mass transfer in a Pt-based cathode catalyst layer for PEM fuel cells; Green Chemistry, 2024, 26, 4432-4448. [20] In Situ Carbon Thermal Reduction to Enrich Sulfur-Vacancy in Nickel Disulfide Cathode for Efficient Synthesizing Hydrogen Peroxide; Small, 2024, 20, 2405683. [21] Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state; Nano Research, 2023, 16, 528-535. [22] Theoretical kinetic quantitative calculation predicted the expedited polysulfides degradation; Nano Research, 2023, 16, 12035-12042. [23] Recent progress in the use of polyanions as solid electrolytes; New Carbon Materials, 2022, 37(2): 358-370. [24] Dual breaking of ionic association in water-in-LiTFSI electrolyte for low temperature battery applications; Journal of Power Sources, 2022, 544, 231874. [25] In situ generated polymer electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li metal batteries; Chemical Engineering Journal, 2022, 433, 133589. [26] V “bridged” Co-O to Eliminate Charge Transfer Barriers and Drive Lattice Oxygen Oxidation during Water-Splitting; Advanced Functional Materials, 2021, 31, 2008822. [27] Controllable Substitution of S Radicals on Triazine Covalent Framework to Expedite Degradation of Polysulfides; Small, 2020, 16, 2004631. [28] Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes; ACS Applied Materials & Interfaces, 2020, 12(42): 47164-47180. 2. 代表性专利 [1] 一种高循环稳定性、大容量的复合材料锂离子电池及其制备方法,发明专利2013105472860 [2] 一种用于锂电池的复合材料及由其制备的纽扣电池,发明专利2015100719160 [3] 一种用于锂离子电池电极的多层复合二氧化钛纳米管材料,发明专利2015103321776 [4] 一种用于锂电池负极的高氮含量锡碳复合材料及制备方法,发明专利2015106005821 [5] 一种用于燃料电池阴极的高氧还原活性的铁/碳化氮共掺杂复合材料,发明专利2016101181732 [6] 一种用于锂电池电极的四氧化三锰以及水锰矿复合材料,发明专利201610124318X [7] 一种锂硫电池用修饰隔膜及其制备方法,发明专利 2017102772166 [8] 一种用于钠离子电池负极的有机磷化锡/氧化石墨复合材料,发明专利 201710990881X [9] 一种用于锂硫电池正极的复合材料及其制备方法,发明专利 2018103701054 [10] 一种用于提高全解水催化活性的双金属共掺杂复合材料,发明专利 2018103835896 [11] 一种用于钠/钾离子电池负极的钛基复合材料的制备方法及其性能测试方法,发明专利 2019105728658 [12] 一种钠/钾电用硬软碳复合材料电极的制备方法,发明专利 2020106101482 [13] 一种用于钠硫二次电池的双金属硫化物的制备方法,发明专利2020106101872 [14] 一种用于有机/无机复合锂离子电池固态电解质材料的制备方法,发明专利202011041053X [15] 一种全固态电解质的制备方法及应用,发明专利202210090152X [16] 一种锂离子电池低共熔液体水系电解液的制备方法及应用,发明专利 2022103219265 [17] 一种负载离子液体的固体酸催化剂的制备方法及其应用,发明专利 2022109429820 [18] 一种电催化生产过氧化氢的催化剂的制备方法及其产品和应用,发明专利 2022115296012 |
|