李忠涛(教授)

发布时间:2024-06-26发布人:吴雪莹浏览次数:6145

    名:

李忠涛


    称:

教授


导师类别:

博士生导师


研究方向:

锂电池隔膜、复合电解质,高比能电池,

电化学和合成化学催化剂和系统集成


电子邮箱:

liztao@upc.edu.cn


联系电话:

0532-86984615


     教育背景


2009/08–2011/05      加州大学圣巴巴拉分校,海洋生物材料系,博士后

2004/09–2009/06      中国科学院化学研究所, 有机固体实验室,博士

2000/09–2004/06      天津大学,高分子材料科学与工程系,学士

 


     工作经历


2020/01至今            威廉希尔体育(华东),化学工程学院,教授

2012/04-2019/12      威廉希尔体育(华东),化学工程学院,副教授

2011/05-2011/12      通用电气(中国)全球研发中心,副研究员

 


◎   科研项目


负责承担纵向项目情况:

1. 国家重点研发计划战略性专项(2023YFE0203600

2. 国家自然科学基金面上项目(51873231

3. 国家自然科学基金面上项目(21572269

4. 山东省重大基础研究(ZR2021ZD24

5. 山东省杰出青年基金(ZR2020JQ21

6. 山东省重点研发计划(2017GGX40118





◎代表性论文及专利


1. 近年来代表性论文

[1] Co Single-Atom Catalysis for High Efficiency   LiCl/Cl2 Conversion in Rechargeable Lithium-Chlorine Batteries; Advanced   Materials, 2025, 2418990.
[2] V   activated electro-epoxidation catalyst in membrane electrode assembly system   for the production of propylene oxide;
Nature Communications, 2025, 16. 3113.
[3] Vacancy-Activated   B-Doping for Efficient 2e- Oxygen Reduction through Suppressing H2O2   Decomposition at High Overpotential;
Angewandte   Chemie-International Edition, 2025, e202423056.
[4]
 Regulating catalyst and   ionomer interactions to promote oxygen transport in fuel cells; Applied Catalysis B:   Environmental, 2025, 365, 124894.
[5]
 Elucidating the mechanistic   synergy of fluorine and oxygen doping in boosting platinum-based catalysts   for proton exchange membrane fuel cells; Journal of Colloid and   Interface Science, 2025, 682: 115–123.
[6]
 Ion‐Framework Electrolyte   Featured Zinc‐Ion Transport for Solvent and Interphasial Co‐Passivation. Advanced Materials, 2025, DOI:   10.1002/adma.202503765.

[7] Structural modulation of   ionic liquids as efficient catalysts for esterification reaction; Canadian Journal of Chemical   Engineering, 2024, 102(6): 2244–2255.
[8]
 Gel Resin Supported Ionic   Liquids as Solid Acids for Esterification Reaction; Catalysis Letters, 2024, 154: 5998–6011.
[9]
 The research progress on COF   solid-state electrolytes for lithium batteries; Chemical Communications, 2024, 60: 10046–10063.
[10]
 Amphiphilic Polymer   Electrolyte Blocking Lattice Oxygen Evolution from High-Voltage Nickel-rich   Cathodes for Ultra-Thermal Stabile Batteries; Angewandte   Chemie-International Edition, 2024, 63, e202407024.
[11]
 Hydrogen Radical Enabling   Industrial-Level Oxygen Electroreduction to Hydrogen Peroxide; Angewandte   Chemie-International Edition, 2024, e202420063.
[12]
 Enhancing Interfacial   Dynamic Stability Through Accelerated Reconstruction to Inhibit Iron-Loss   During Initial Electrochemical Activation; Advanced Energy Materials, 2024, 14, 2302403.
[13]
 High-Entropy and Multiphase   Cathode Materials for Sodium-Ion Batteries; Advanced Energy Materials, 2024, 14, 2302403.
[14] Regulating   Interfacial Li Deposition at Low-Temperature through Eliminating Li+ Transfer   Mismatching by Artificial Modifying the Interface in Solid State Battery;
Advanced Energy Materials, 2024, 2405284.
[15] Synergistic   Interactions Between Co Nanoparticles and Unsaturated Co-N2 Sites for   Efficient Electrocatalysis;
Advanced Functional Materials, 2024, 2410373.
[16] Inspiration   of Bimetallic Peroxide for Controllable Electrooxidizing Ethylene Glycol   Through Modulating Surficial Intermediates;
Advanced Functional Materials, 2024, 2404594.
[17]
 Cu-Sn Bimetallic Activated   Carbon–Carbon Coupling for Efficient Furfural Electroreduction; ACS Catalysis, 2024, 14, 5817-5826.
[18]
 Rigid and flexible   dual-network polymer electrolytes with enhanced interfacial interaction to   accelerate Li+ transfer; Journal of Materials   Chemistry A, 2024, 12: 28224–28232.
[19]
 Optimized mass transfer in a   Pt-based cathode catalyst layer for PEM fuel cells; Green Chemistry, 2024, 26, 4432-4448.
[20] In   Situ Carbon Thermal Reduction to Enrich Sulfur-Vacancy in Nickel Disulfide   Cathode for Efficient Synthesizing Hydrogen Peroxide;
Small, 2024, 20, 2405683.

[21] Amphoteric covalent organic   framework as single Li+ superionic conductor in all-solid-state; Nano Research, 2023, 16, 528-535.
[22] Theoretical   kinetic quantitative calculation predicted the expedited polysulfides   degradation;
Nano Research, 2023, 16, 12035-12042.

[23] Recent progress in the use   of polyanions as solid electrolytes; New Carbon Materials, 2022, 37(2): 358-370.
[24]
 Dual breaking of ionic   association in water-in-LiTFSI electrolyte for low temperature battery   applications; Journal of Power Sources, 2022, 544, 231874.
[25]
 In situ generated polymer   electrolyte coating-based Janus interfaces for long-life LAGP-based NMC811/Li   metal batteries; Chemical Engineering Journal, 2022, 433, 133589.

[26] V “bridged” Co-O to Eliminate Charge Transfer   Barriers and Drive Lattice Oxygen Oxidation during Water-Splitting; Advanced Functional Materials, 2021, 31, 2008822.

[27] Controllable Substitution of   S Radicals on Triazine Covalent Framework to Expedite Degradation of   Polysulfides; Small, 2020, 16, 2004631.
[28]
 Uncovering the chemistry of   cross-linked polymer binders via chemical bonds for silicon-based electrodes;   ACS Applied Materials &   Interfaces, 2020, 12(42): 47164-47180.

2. 代表性专利

[1] 一种高循环稳定性、大容量的复合材料锂离子电池及其制备方法,发明专利2013105472860

[2] 一种用于锂电池的复合材料及由其制备的纽扣电池,发明专利2015100719160

[3] 一种用于锂离子电池电极的多层复合二氧化钛纳米管材料,发明专利2015103321776

[4] 一种用于锂电池负极的高氮含量锡碳复合材料及制备方法,发明专利2015106005821

[5] 一种用于燃料电池阴极的高氧还原活性的铁/碳化氮共掺杂复合材料,发明专利2016101181732

[6] 一种用于锂电池电极的四氧化三锰以及水锰矿复合材料,发明专利201610124318X

[7] 一种锂硫电池用修饰隔膜及其制备方法,发明专利 2017102772166

[8] 一种用于钠离子电池负极的有机磷化锡/氧化石墨复合材料,发明专利 201710990881X

[9] 一种用于锂硫电池正极的复合材料及其制备方法,发明专利 2018103701054

[10] 一种用于提高全解水催化活性的双金属共掺杂复合材料,发明专利 2018103835896

[11] 一种用于钠/钾离子电池负极的钛基复合材料的制备方法及其性能测试方法,发明专利   2019105728658

[12] 一种钠/钾电用硬软碳复合材料电极的制备方法,发明专利 2020106101482

[13] 一种用于钠硫二次电池的双金属硫化物的制备方法,发明专利2020106101872

[14] 一种用于有机/无机复合锂离子电池固态电解质材料的制备方法,发明专利202011041053X

[15] 一种全固态电解质的制备方法及应用,发明专利202210090152X

[16] 一种锂离子电池低共熔液体水系电解液的制备方法及应用,发明专利 2022103219265

[17] 一种负载离子液体的固体酸催化剂的制备方法及其应用,发明专利 2022109429820

[18] 一种电催化生产过氧化氢的催化剂的制备方法及其产品和应用,发明专利 2022115296012





     获奖情况及荣誉称号


◎ 获奖情况

1. 2024年获山东省科学技术奖技术发明一等奖(1/11

2. 2022年获中国石油与化学工业科技进步奖二等奖(4/10

3. 2020年获中国化工学会技术发明奖二等奖(1/7

4. 2018获中国石油与化学工业技术发明奖二等奖(1/8

◎ 荣誉称号

1. 2020年获山东省自然科学基金杰出青年基金

2. 2025年获山东省泰山学者

3. 2018年获全国石油与化学工业优秀科研工作者

4. 2018年获威廉希尔体育(华东)十佳百佳班主任

5. 2014年获青岛西海岸新区紧缺人才称号














 

 


【作者:   审核:】